The Equation
Return$$|x|=\lim_{h \to \infty}h\sqrt{2(1-\cos(\frac{x}{h}))}$$
Using the Double angle formula for cosine
$$\cos(2\theta)=\sin(\theta)^2-\cos(\theta)^2$$
Pythagoras for trig
$$\sin(\theta)^2+\cos(\theta)^2=1$$
$$\cos(\theta)^2=1-\sin(\theta)^2$$
Substituting it in the Double angle formula
$$\cos(2\theta)=\sin(\theta)^2-(1-\sin(\theta)^2)$$
$$=\sin(\theta)^2+\sin(\theta)^2-1$$
$$=2\sin(\theta)^2-1$$
$$2\theta=\frac{x}{h}$$
$$\cos(\frac{x}{h})=2\sin(\frac{x}{2h})^2-1$$
Substituting into the first equation
$$\lim_{h \to \infty}h\sqrt{2(1-2\sin(\frac{x}{2h})^2-1)}$$
$$=\lim_{h \to \infty}h\sqrt{2(2\sin(\frac{x}{2h})^2)}$$
$$=\lim_{h \to \infty}h\sqrt{2^2\sin(\frac{x}{2h})^2}$$
$$=\lim_{h \to \infty}h\sqrt{(2\sin(\frac{x}{2h}))^2}$$
$$=\lim_{h \to \infty}h\sqrt{(2\sin(\frac{x}{2h}))^2}$$
$$=\lim_{h \to \infty}h|2\sin(\frac{x}{2h})|$$
As $h \to \infty$, $\frac{x}{2h} \to 0$. As $\theta \to 0$, $\sin(\theta) = \theta$
$$=\lim_{h \to \infty}h|2\frac{x}{2h}|$$
$$=\lim_{h \to \infty}h|\frac{x}{h}|$$
$$=\lim_{h \to \infty}|x|$$
$$=|x|$$
$$|x|=\lim_{h \to \infty}h\sqrt{2(1-\cos(\frac{x}{h}))}$$